

Six years Mewis Duct® Six years of hydrodynamic development

Main partner

Becker Marine Systems, Hamburg

Financing, marketing, managing, steel design

IBMV, Rostock

CFD-calculations, hydrodynamic design

Mewis Ship Hydrodynamics, Dresden

Concept, hydrodynamic design up to 2012

Further companies involved considerably:

13 towing tanks worldwide

3 manufacturers in Spain, Singapore, China

about 25 shipyards worldwide

Six years Mewis Duct® Six years of hydrodynamic development

Contents

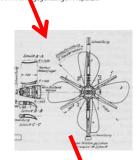
- Background history
- Loss analysis around running propeller
- Results in model scale
- Hydrodynamic development
- Results in full scale
- Side effects
- Combination with other ESDs
- Summary

Reduction of rotational losses

1836 **Contra Propeller** Erikson

Background Mewis Duct®

Reduction of wake losses



1927 **Kort Nozzle** L. Kort Germany

1904/1929

Contra Propeller Princ.

K. Wagner Germany

1949

Lammeren Duct

Van Lammeren The Netherlands

1984

SVA Fin System H. Peters, F. Mewis

Germany

1982

WED

H. Schneekluth Germany

2002

PSS DSME

Korea

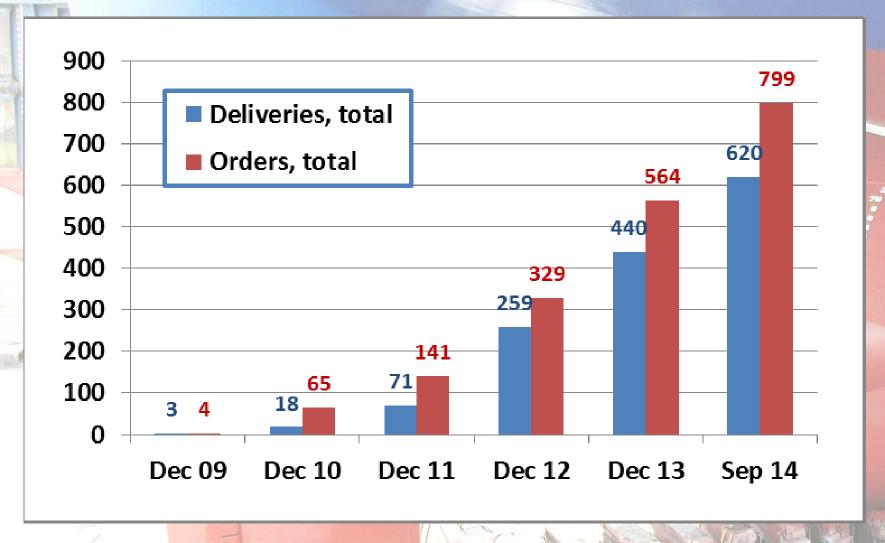
1996

SILD

Sumitomo

Japan

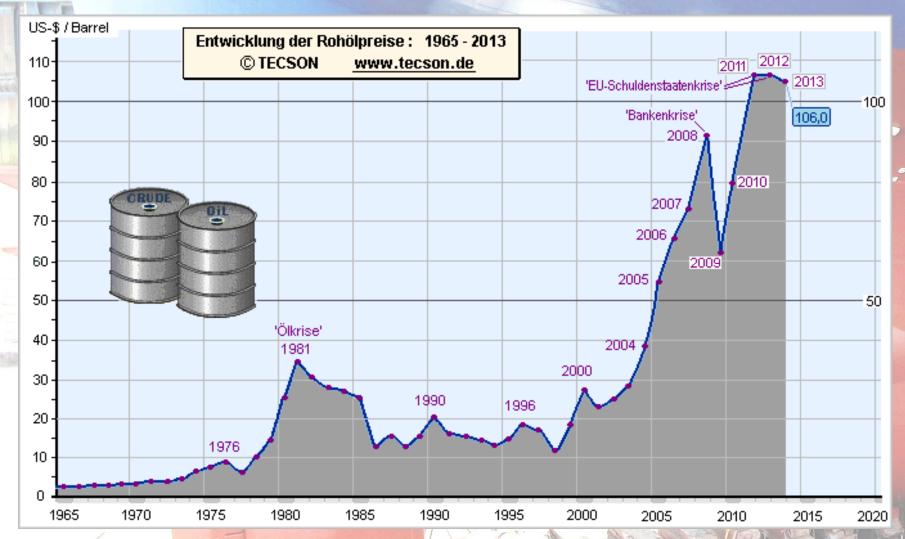
2008


Mewis Duct® (MD)

Becker Marine Systems Germany

Mewis Duct® - Numbers of orders and deliveries

Mewis Duct® - Reasons for exceptional success Commercial reasons


- 1. The oil price has been stable at a high level for about 4 years
- 2. The power reduction by MD is stable and high (average 6%)
- 3. Based on 1. and 2. the ROI is less than 1 year
- 4. The MD is suited to both new-build and retrofit applications
- 5. The MD is efficient also under off-design conditions
- 6. BMS is a very well suited company for marketing ESDs
 - worldwide network build up over 60 years
 - high qualification in marine applications
 - strong organisation
 - no cure no pay guarantee of power reduction

Mewis Duct® - Reasons for exceptional success

Mewis Duct® - Reasons for exceptional success

Non commercial reasons

 The Mewis Duct is an ESD which reduces two independent losses in the flow around an operating propeller

Pre-duct: reduced losses in the wake

Fin-System: reduced rotational losses in the slipstream

- 2. The MD-design has been highly developed from the beginning
 - use of personal experience in developing and testing ESDs
 - use of CFD-calculations for design and optimisation
 - custom tailored design for each ship series
 - use of experience from abt. 170 MD-projects to date
- 3. Tremendous progress in CFD-tools and experience within 6 years
 - all calculations are carried out with running propeller
 - calibration of CFD-results to model tests for about 160 projects

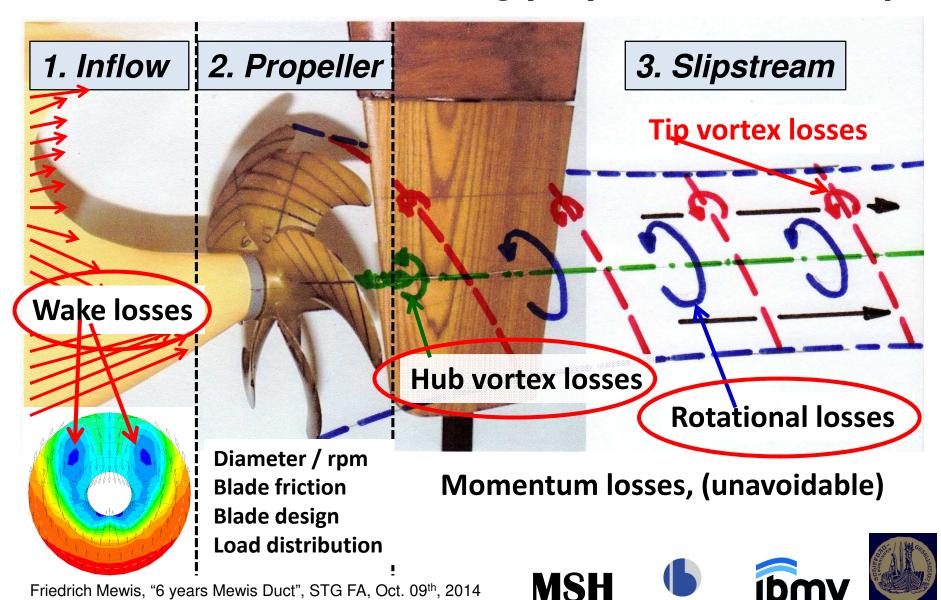
Hydrodynamic Energy Saving Devices, losses around running propeller behind ship

Dyne, Gilbert, SSPA Gothenburg, EIGHT WEGEMT SCHOOL, 1983:

"Ship propulsion improvement – principles and a survey of alternative propulsion systems"

Rules for shaft power reduction (summary, word-for-word):

- 1. Increase the quantity of fluid passing the propeller disk in unit time
- Decrease the slipstream rotation simultaneously as other losses are kept down or reduced
- 3. Decrease the drag force on the propeller blades
- 4. Move the propulsion units to areas where the frictional wake is high
 - 5. Do not believe everything you are told!



Hydrodynamic Energy Saving Devices, losses around running propeller behind ship

Hydrodynamic Energy Saving Devices

No	Name	Company/ Inventor	Country	Typ of device	Location of device	Main sorces for improvement	power reduction %
One	Component De	evices					
1	SAVER-Fins	Samsung	Korea	forward pre-fins	far forward to propeller	using energy of ships wake	0-3
2	Tandem Fins	Sanoyas	Japan	forward pre-fins	far forward to propeller	using energy of ships wake	0-5
3	WED	Schneekluth	Germany	pre-duct	next forward to propeller	equilising of propeller inflow	0 - 4
4	SILD	Sumitomo	Japan	pre-duct	next forward to propeller	equilising of propeller inflow	1-6
5	SVA-Fin-System	SVA	Germany	pre-fins	next forward to propeller	reduction slipstream rotation	2-3
6	Pre-Swirl-System	DSME	Korea	pre-fins	next forward to propeller	reduction slipstream rotation	2-5
7	Kappel-Propeller	MAN	Danmark	propeller tip configur.	propellertip	reduction propeller tip vortex	1-3
8	Gomez-Propeller	SISTEMAR	Spain	propeller tip configur.	propellertip	reduction propeller tip vortex improved load distribution	1-4
9	PBCF	Ochi	Japan	fins at propeller hub	aft end of the hub	reduction propeller hub vortex	1-3
10	Rudder Bulb	Costa	Swizerland	rudder bulb	rudder	reduction propeller hub vortex	0-3
11	Hybrid-fins	Fukudam	Japan	rudder-fins	rudder	reduction slipstream rotation reduction propeller hub vortex	2-4
12	Twisted rudder	BMS	Germany	rudder, leading edge twisted	rudder	reduction rudder resistance reduction slipstream rotation	0-2
VIul	ti Component [Devices					
13	ENERGOPAC		Finland	integrated rudder- propeller hub	propeller and rudder	reduction propeller hub vortex reduction propeller loading	2-6
14	PROMAS	Rolls Royce	Sweden	integrated rudder- propeller hub	propeller and rudder	reduction propeller hub vortex reduction propeller loading	2-6
15	CRP	Erikson	-	two contrarotating propellers	second propeller direct behind first propeller	reduction slipstream rotation reduction propeller loading	5 - 14
16	Grim Vane Wheel	Grim	Germany	additional vane turbine behind propeller	vane wheel direct behind propeller	reduction propeller loading reduction slipstream rotation	5 - 12
17	Mewis Duct®	BMS	Germany	pre-duct with integrated pre-fin system	next forward to propeller	equilising of propeller inflow reduction slipstream rotation reduction propeller hub vortex	3-8

Hydrodynamic Energy Saving Devices, losses around running propeller behind ship

The numbers are valid for a so called optimum propeller and nearly optimum hull lines design

Losses around working propeller behind ship					
Example: Bulk Carrier, V=15 kts, CTh = 2.3					
Type of loss	recoverable losses	Remark			
	%				
frictional in the wake	0 to 10	depends very on hull lines			
rotation in slipstream	5 to 7	less dependence			
propeller tip vortex	1 to 3	depends on load distribution			
propeller hub vortex	1 to 3	depends on load distribution			
		and hub diameter			

With a well designed ESD is it possible to avoid about 2/3 of the recoverable losses

Mewis Duct® - Mode of action, possible gains

- The fin-system produces pre-swirl and leads to lower rotational losses in the propeller slip stream,
 Gain very stable, 2% to 4%
- 2. The pre duct improves the propeller inflow, Gain depends on the wake field, 1% to 6%
- 3. Both together reduce the hub vortex

 Gain small

 0% to 1%

Total possible gain 3% to 11%

Realistic possible gain 3% to 8%

Mewis Duct® - Model test results up to 2012

Mewis Duct® - Model test results in 2014

Nr.	Towing		DWT	Ship	V	Power Reduction
141.	Tank	Country	DWI	Type	kts	%
1	BSHC	Bulgaria	82k	ВС	14,3	5,0
2	SVA	Germany	61k	ВС	14,3	6,8
3	BSHC	Bulgaria	318k	VLCC	16,7	5,6
4	BSHC	Bulgaria	82k	BC	14,5	3,6
5	FORCE	Denmark	32k	BC	14,4	7,4
6	SVA	Germany	38k	BC	13,8	5,2
7	HRBI	Croatia	23k	LPG	16,5	8,3
8	HSVA	Germany	37,7k	ВС	14,5	9,1
9	FORCE	Denmark	114k	ВС	14,5	6,3
10	HRBI	Croatia	47k	PC	15,3	7,5
11	BSHC	Bulgaria	110k	СОТ	14,7	6,5
12	SVA	Germany	61k	ВС	14,3	5,3
13	HRBI	Croatia	158k	BC (w SF)	15,9	4,7
14	BSHC	Bulgaria	260k	СОТ	14,5	8,0
15	MARINTEK	Norway	60k	LPG	16,0	7,5
16	SVA	Germany	63,5k	BC?	14,1	2,8
17	SSPA	Sweden	156k	СОТ	13,5	6,3
18	BSHC	Bulgaria	159k	СОТ	15,2	6,6
19	SRC	Japan	89k	ВС	14,0	7,1
20	HRBI	Croatia	105k	TAN	12,2	9,2
21	SSPA	Sweden	110k	СОТ	15,0	7,0
22	SVA	Germany	37k	PC	15,0	6,5
23	BSHC	Bulgaria	308k	СОТ	16,4	7,8
24	FORCE	Denmark	28k	Slur. C.	13,0	2,3
25	HMRI	Korea	12k	LEGC	16,0	4,7
26	HRBI	Croatia	110k	СОТ	14,5	7,1
27	SSPA	Sweden	160k	СОТ	14,5	6,1
28	HRBI	Croatia	105k	ОТ	14,9	8,6
29	KRISO	Korea	151k	ВС	14,0	3,5
30	HSVA	Germany	320k	VLCC	16,0	6.3
	Average power reduction (design Draught): 6,3					

Model test results with Mewis Duct®, January – June 2014

Average power reduction, Design Draught: 6.3%

Mewis Duct® - Evolution 2008 - 2014

Average power reduction by MD, design draught, model test results

2009-2011 5.6%

2014 6.3%

6.3 / 5.6 = 1.12

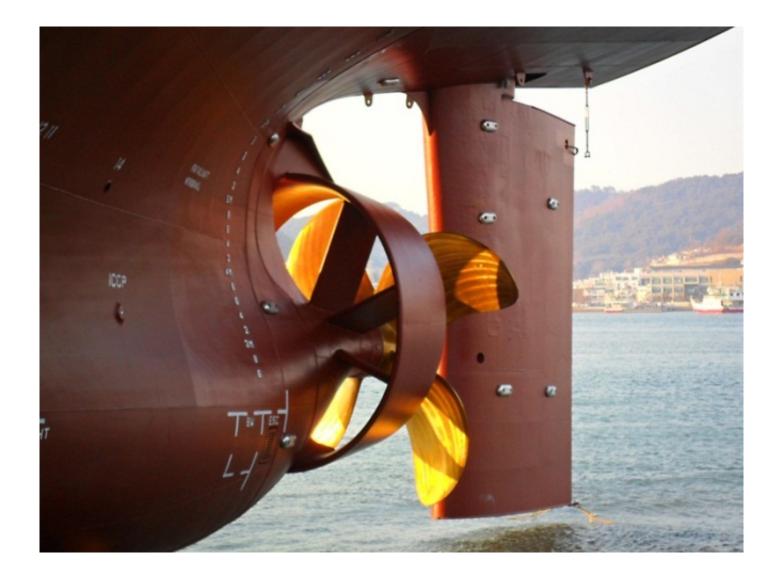
The evolution in power reduction results from the optimisation by CFD-calculations, model tests and full-scale experience.

Mewis Duct® - Evolution 2008 - 2014

Evolution of MD-main properties

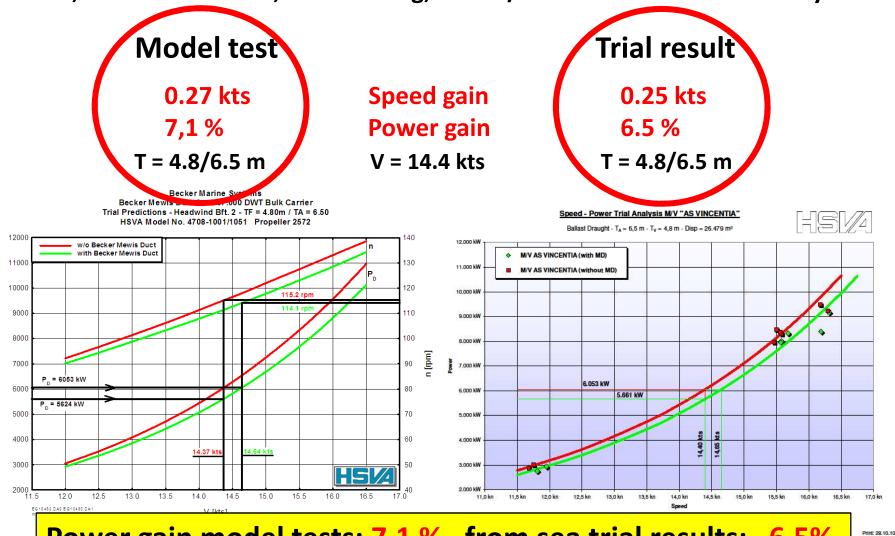
	Initial	Evolved
Duct diameter DD	0.55 DP	>0.55 DP
Duct length LD	0.5 DD	< 0.5 D D
Duct position	above	above
Duct profile	ME 4308	ME 4308-12
Fin profile	ME 4312	ME 4312
Number of fins	4	5-6
Fin distribution	3/1	3/2 (+1)

The evolution in main properties results from the optimisation by CFD-calculations, model tests and full-scale experience.



Becker Twisted Fin® is a further development of the Mewis Duct® for faster ships such as Container Vessels

Mewis Duct® - Model test results / Full scale results



Mewis Duct® - Model tests / Full scale trial

57,000 DWT – Bulker, newbuilding, trial w/o and with MD within 5 days

Power gain model tests: 7.1 %, from sea trial results: 6.5%

Mewis Duct® - Model tests / Full scale trial

Sea Trial Results of a 118k Bulk Carrier, 10 sister ships

Vessel w/o Mewis Duct®Trial speed ship 1: 15.38 kts (A)

ship 2: 15.37 kts

HSVA-model test ship 3: 15.12 kts (B)

predicted speed: 15.26 kts Trial average: 15.29 kts

Vessel with Mewis Duct®Trial speed ship 4: 15.52 kts

ship 5: 15.44 kts (A)

ship 6: 15.59 kts (B)

ship 7: 15.56 kts

ship 8: 15.55 kts

ship 9: 15.54 kts

HSVA-model tests ship 10: 15.48 kts

predicted speed: 15.48 kts Trial average: 15.53 kts

(A) lowest gain: ship 5 – ship 1

 $\Delta V = 0.06 \text{ kts}$

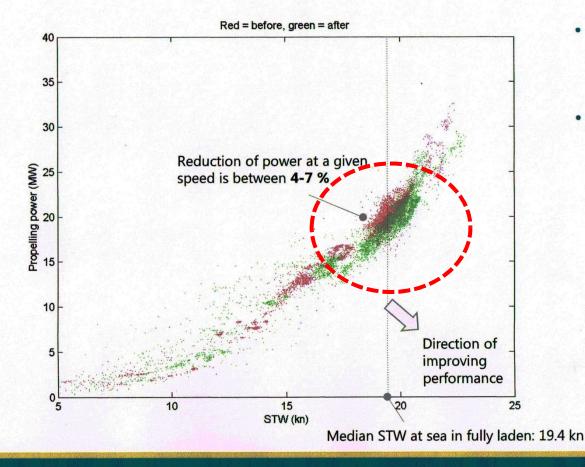
 $\Delta PD = 1,9 \%$

(B) highest gain: ship 6 – ship 3 ΔV = 0.47 kts

 $\Delta PD = 14.7 \%$

Speed gain model tests: +0.22 kts, from sea trial results: +0.24 kts

Power gain model tests: 6.9 %, from sea trial results: 7.5%



Mewis Duct®, Becker Twisted Fin®, Power monitoring

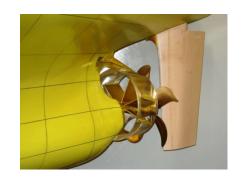
IMPACT IN HEAVIER LOAD (DRAFT > 11 M)

- In heavier loading conditions, the improvement in performance can be seen at speeds above 15 knots
- At smaller speeds, there is no remarkable difference in performance before and after the twist fin installation

Twist fin impact
0 %
1 - 3 %
4-7%

CONFIDENTIAL

7



Mewis Duct® - Model tests / quasi Full scale tests

2010-2011, Joint Industry Project: ESD-JILI, MARIN, GSI (Guangzhou); SSSRI (Shanghai)

MARIN, method: "smart ship model"

Result: Power reduction 6.0% in model scale and full scale

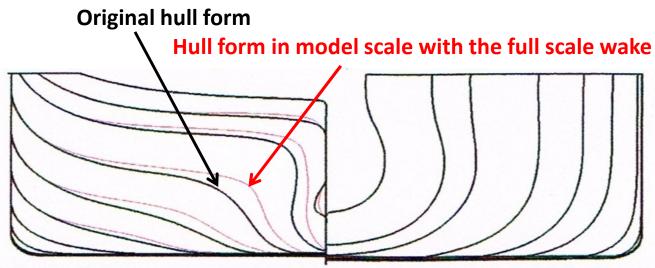
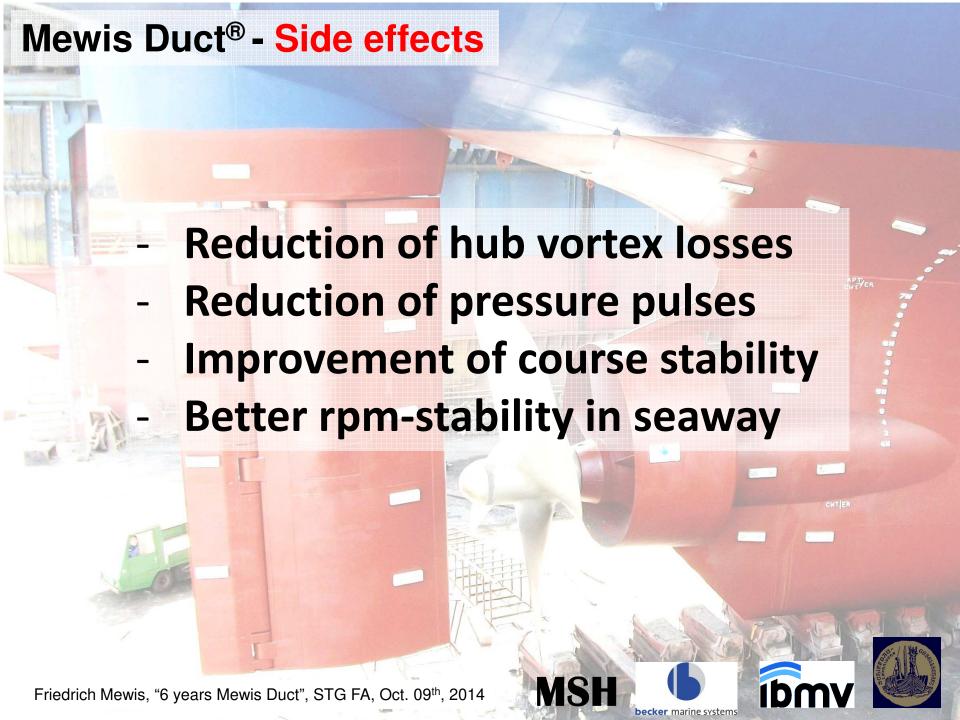


Figure 7 Comparison of the smart ship model (red thin lines) to the original hull form (black thick lines), not to scale.

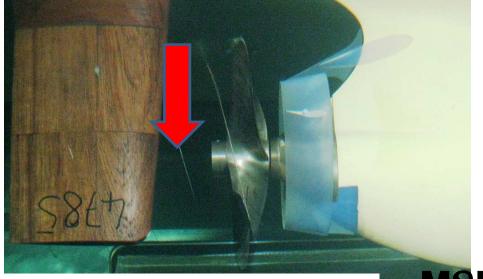
Source: Dang, J. at all, (2011), An Exploratory Study on the Working Principles of Energy Saving Devices (ESDs), Wuxi, China, CSSRC

Mewis Duct® - Model tests / quasi Full scale tests

2010-2011, Joint Industry Project: ESD-JILI, MARIN, GSI (Guangzhou); SSSRI (Shanghai)


80k BC, designed by GSI					
Measurements at MARIN					
Device Power reduction					
	Model scale	Full scale			
		Smart ship model			
PBCF	2,0	2,1			
PSS	4,4	4,1			
MD	6,0	6,0			
PSS + PBCF	5,4	-			
MD + PBCF	7,0	1			

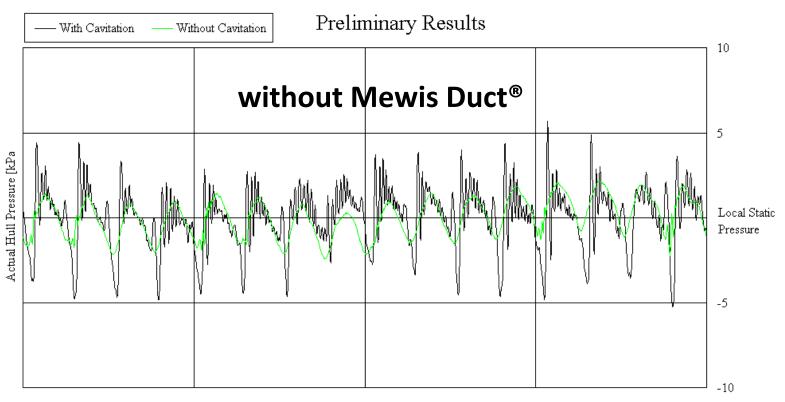
Source: Dang, J. at all, (2011), An Exploratory Study on the Working Principles of Energy Saving Devices (ESDs), Wuxi, China, CSSRC



Mewis Duct® - Reduction of hub vortex, example

without MD

with MD



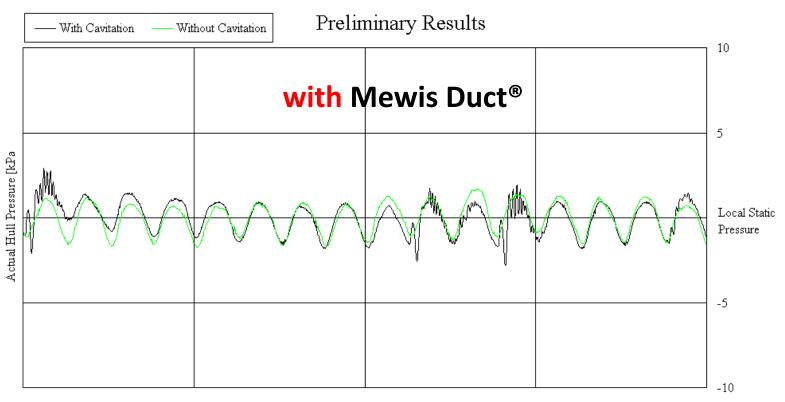
Mewis Duct® - Pressure pulse measurements, examp

PSD017_10_1, F:\k17_10_1\S1100827_003_001.csv, F:\k17_10_1\S1100827_001_001.csv, HYKAT-DS-Auswertung-Version 2.10-rev. 01, Pressure Pulses xls-Version 2.0

4 Propeller Revolutions (beginning at 12 o'clock position)

Fig. 5: Piece of the Hull Pressure Time Function at Pick-Up P1 (Full Scale)

Condition 2 - without Mewis Duct - without Saver Fins



Mewis Duct® - Pressure pulse measurements, examp

PSD017_10_1, F:\k17_10_1\S1100826_006_001.csv, F:\k17_10_1\S1100826_004_001.csv, HYKAT-DS-Auswertung-Version 2.10-rev. 01, Pressure Pulses xls-Version 2.0

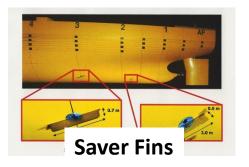
4 Propeller Revolutions (beginning at 12 o'clock position)

Fig. 5: Piece of the Hull Pressure Time Function at Pick-Up P1 (Full Scale)

Condition 4 - with Mewis Duct - without Saver Fins

Mewis Duct® - Experience Course Stability, example

Model	test: 46,00	0 tdw Tanker	, SSPA			
Zig-Zag-Tests 10°/10°	IMO-Criterion	w/o MD	with MD	MD/without		
1st overshoot (°)	17,2	17,0	14,5	-15%		
2nd overshoot (°)	31,8	40,6	31,4	-23%		
Tactical diameter/Lpp	5,00	2,75	2,84	3%		
Full S	Full Scale trial: 163,000 tdw Bulker					
1st overshoot (°)	20,0	10,5	9,0	-14 %		
2nd overshoot (°)	35,0	26,9	22,0	-18 %		



Mewis Duct® - Combination with other ESDs

BMS
Twisted Rudder

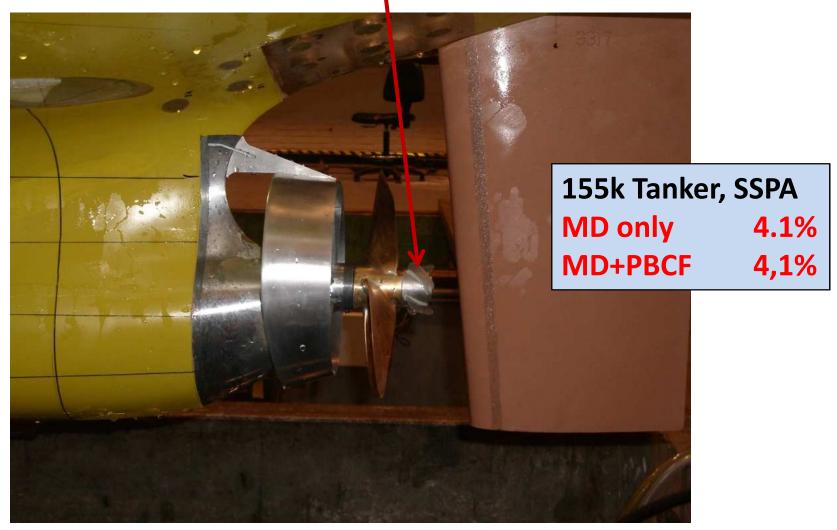
In spite of combining ESD's, flow losses can only be minimized once

MD, Comparison PBCF - PSS - MD, MARIN 2011

2010-2011, Joint Industry Project: ESD-JILI, MARIN, GSI (Guangzhou); SSSRI (Shanghai)

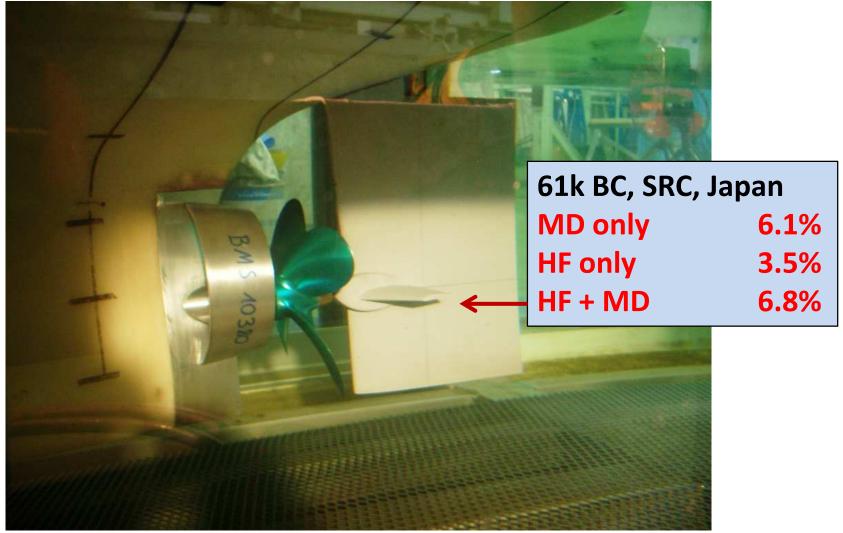
80k BC, designed by GSI						
	Measurements at MARIN					
Device	Powe	r reduction				
	Model scale	Full scale				
		Smart ship model				
PBCF	2,0	2,1				
PSS	4,4	4,1				
MD	6,0	6,0				
PSS + PBCF	5,4	-				
MD + PBCF	7,0	-				

Source: Dang, J. at all, (2011), An Exploratory Study on the Working Principles of Energy Saving Devices (ESDs), Wuxi, China, CSSRC



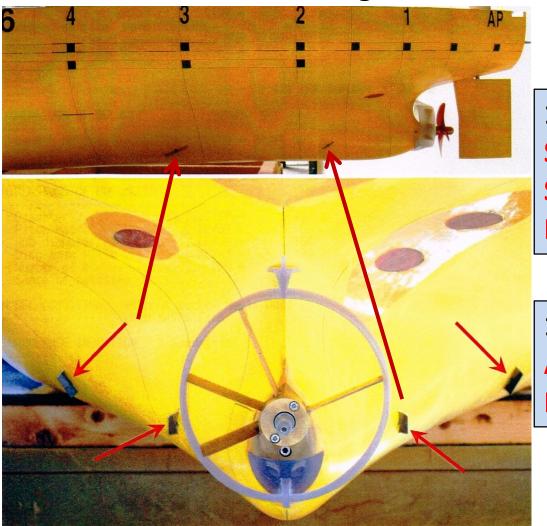
Mewis Duct® + PBCF, Japan

Propeller Boss Cap Fins, Inventor: Ochi, Japan



Mewis Duct® + Hybrid Fins, Japan

Inventor: Fukudam



Mewis Duct® + SAVER-FIN (Samsung), Korea

Samsung Vibration & Energy Reaction Fin

158k Tanker, HSVA, 2010

SAVER-FINS only 1.6%

SAVER-FINS + MD 3.8%

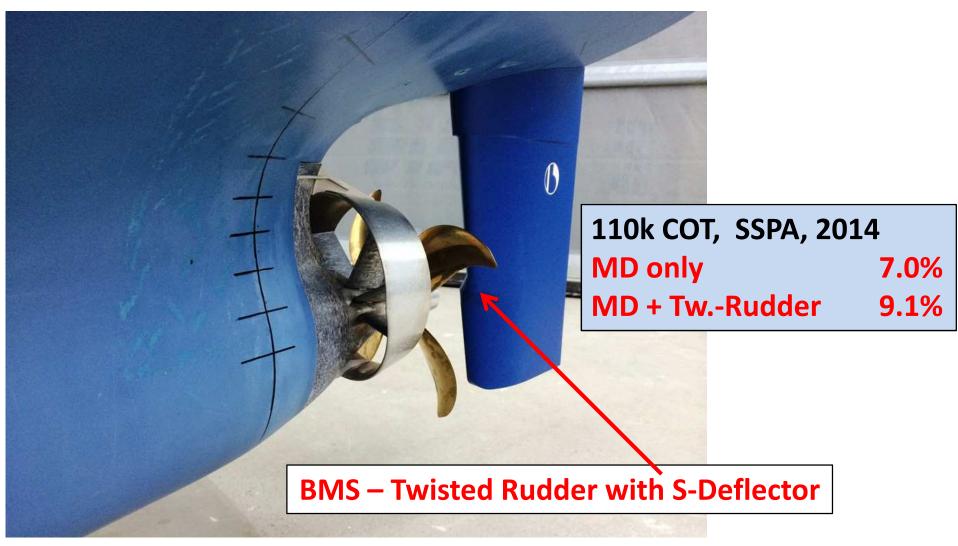
MD only

2.1%

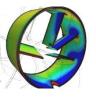
158k Tanker, HRBI, 2014
All tests were carried with SF
MD only (additional) 4.7%

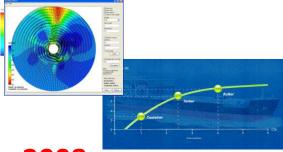
Mewis Duct® + Sanoyas Tandem Fins (STF), Japan

Sanoyas is claiming up to 6% power savings by STF only (this variant was not investigated within this test series)

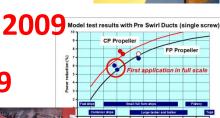


Mewis Duct® + BMS Twisted Rudder (TLKSR®)




Mewis Duct® - Summary I

September 2014:


170 Projects 800 Orders

600 Deliveries

Hydrodynamische Maßnahmen zur Verringerung

Mewis Duct® - Summary II

The Mewis Duct® is the most successful ESD in recent years

The key reasons are:

- Stable power reduction between about 3% and 8%, nearly independent of speed and draught
- Reduction of vibrations and improvement of course stability
- Suited for both new buildings and retrofits
- BMS guarantees the power reduction with the certification from model tests; no cure – no pay
- The payback time is less than one year

Mewis Duct® - SMM 2014, MD No 750

I would like to express my gratitude to all colleagues at BMS and IBMV who have been involved in the "Mewis Duct" - project, as well as to all the many engineers and experts worldwide who have been involved in this successful endeavour.

Many thanks for your attention!

